您当前的位置: 首页 > 科技

车身控制模块设计要求及安森美半导体解决方

2018-06-13 14:55:45

随着人们对汽车的操控性及舒适性需求不断升高,汽车车身中的电子设备愈来愈多,如电动后视镜、中控门锁、玻璃升降器、车灯乃至其它更多的高级功能等。

图1:典型车身控制模块(BCM)的系统架构。

电源要求及方案选择

典型车身控制模块(BCM)设计重要的1步是肯定电源要求,和选择适合的电源方案。1般而言,BCM要求的输入电压在-0.5 V至32 V之间,输出电压为5 V或3.3 V。值得1提的是,汽车内的用电装备愈来愈多,如果电池直接供电的装备静态电流不够低,而汽车连续停靠较长时间,车内蓄电池可能由于过度放电而使汽车没法重新启动,故BCM设计需要推敲静态电流。另外,汽车利用中可能会常常面对高温环境,所以要求电源提供过温保护。

合适于BCM的电源包括线性电源(或称线性稳压器)和开关电源(或称开关稳压器)。这两种电源各有优势,究竟选择何种电源,还要看具体利用。在车身控制模块的供电电源方面,中国市场上所售汽车中,轿车1般采取12 V电源,而卡车和客车1般采取24 V电源。在12 V电源BCM中,推荐采取安森美半导体的线性稳压器,如NCV4275A等,见图2。NCV4275A是1款带复位和延迟功能的5 V、3.3 V/450 mA低压降(LDO)线性稳压器,这款器件支持可编程微控制器复位,并提供多种特性,如过流保护、过温保护、短路保护等。另外,在下图中位置1处串联1个2极管(MRA4005),这线性电源能有效避免高达⑷2 V的反向电压;在位置2处并联1个瞬态电压抑制器(TVS)管,可以有效制止高达 45 V的瞬态电源负载突降(load dump)高压脉冲及不稳定的电源杂波,符合12 V汽车电源系统的ISO16750⑵⑵003 4.6过压测试规范。实际上,在汽车发动机启动瞬间便可能出现负载突降,从而导致电池电压升高至超过40 V。这些特性让NCV4275A非常适合汽车车身控制模块利用。

实际上,NCV4275A仅是安森美半导体针对汽车利用的宽范围线性稳压器中的1款,其它线性稳压器有如NCV8664/5、NCV4949、NCV8503/4/5/6、NCV4274A等。超低静态功耗的产品,静态电流低至30 A以下,驱动电流范围在100 mA至450 mA之间。

图2:车身控制模块中线性电源典型利用电路示意图。

24 V电源的BCM利用中,需要将24 V电压转换至5 V或3.3 V,如果采取线性稳压器,电源芯片本身就会有很高的功率消耗,产生大量热量致使温度太高而烧坏芯片,所以我们需要采取开关稳压器,我们推荐采取安森美半导体系列用于汽车的开关稳压器,如NCV51411、NCV8842、NCV8843、NCV33063、NCV33163、NCV3063、NCV3163、LM2576、LM2575及NCV2574等。这些开关稳压用具有较高的效率,避免产生大量的放热,保护芯片,提升系统可靠性。这些汽车利用的开关稳压器驱动电流多数在0.5 A至1.5 A之间,有的到达2.5 A(NCV33163),开关频率在50 kHz至300 kHz之间。以NCV51441为例,这款器件使用V2控制架构,提供无可比拟的瞬态响应、整体稳压精度及简单的环路补偿。这款器件上的BOOST引脚支持充当启动电路(Bootstrapped)工作,将能效提升至;集成的同步电路支持并行电源工作或将噪声降至。

车身络要求及发展趋势

可以利用于汽车中的系统总线有多种,如控制器区域络(CAN)、本地互连络(LIN)及FelxRay等。这些总线的特点各不相同,表1比较了汽车利用中几种常见的系统总线,并列出了典型的安森美半导体总线收发器产品。

表1:不同汽车总线比较及典型收发器。

安森美半导体的总线收发器系列非常合适车身控制络利用要求。图3a)及b)分别显示了基于安森美半导体CAN收发器AMIS⑷2665及LIN收发器NCV7321的典型电路。值得1提的是,AMIS⑷2665提供小于的10 A的极低静态电流。支持总线唤醒,共模电压范围⑶5 V至 35 V,可以承受额定 /⑻ kV的静电放电(ESD)脉冲。NCV7321则支持⑷5 V至 45 V的电压范围,承受额定5 kV的ESD脉冲。这些器件均提供强大的保护功能。

图3:基于安森美半导体收发器的典型CAN电路(图a)及LIN电路(图b)。

在车身控制络利用中,需要尽可能地配合下降本钱及空间要求,同时提升系统的稳定性和长时间可靠性,故需要提升元器件的集成度。得益于近几年来出现的混合信号工艺,如安森美半导体的Smart Power高压BCD工艺,高压模拟电路如今能够与低压电路集成起来,使更高集成度的系统芯片得以开发和利用。如安森美半导体的NCV7440在同1颗芯片上集成了线性稳压器及CAN收发器,NCV7420则集成了线性稳压器及LIN收发器。这样的集成有效节省PCB板空间,可以给MCU单独供电,有效遏制其它模块对MCU电源的干扰。

安森美半导体身为全球的高性能、高可靠性硅解决方案供应商,更加汽车车身控制络利用推出1款超高集成度的芯片NCV7462。这款芯片集成了线性稳压器、CAN收发器、LIN收发器、看门狗(WD)电路、低边驱动及高边驱动,将所需外部元件数量减至极少,仅占用极小的电路板空间

车身控制模块设计要求及安森美半导体解决方

,并帮助简化设计流程。

遥控上锁及开锁设计要求及解决方案

汽车中的遥控上锁及开锁的利用愈来愈普及。车身控制模块使用315 MHz(美国、日本)或433MHz(欧洲)频率,通太高频接收和发送来实现遥控上锁及开锁功能。这类利用中的设计难点在于设计阻抗匹配电路,从而使功率消耗降至。此类利用的通用要求包括低静态电流、提供睡眠模式、低发射功率、高接收灵敏度、低功耗及合适的频率范围等。而安森美半导体的ON⑸3480高频收发器很好地满足这些设计要求,如静态电流低至小于1 A,带有唤醒及睡眠检测功能,信号电平仅为10 dBm,接收灵敏度更是低于⑴00 dBm,且工作电流仅为10 mA,频率范围为280至343 MHz。

板外大功率负载驱动及方案比较

车身控制模块电路板需要为板外的1些大功率负载供电,这些负载包括汽车内部照明(5 W及10 W)、单向机电和汽车喇叭等。1种可选的方案是采取板内继电器。继电器的线圈属于感性负载,而感性负载在启动时需要比保持正常工作所需电流大的启动电流,且感性负载在接通电源或断开电源的瞬间会产生反向电动势。要驱动继电器,可以采取安森美半导体的NUD3124、NUD3160或NCV7608等继电器驱动器。

表2:板外大功率负载驱动方案优缺点比较

另外一种方案是采取预驱动器 MOSFET来驱动板外大功率负载,其中预驱动器可以采取安森美半导体的NCV7513A,这器件支持并行端口及SPI端口通讯,可编程,提供失效模式检测及短路和断路诊断功能。

第3种方案是采取SmartFET驱动。这是带保护的MOSFET,在MOSFET基础上增加了多种功能,如过压钳位、ESD保护、过流保护、过温保护、反压保护及高边和低边驱动。典型器件如低边驱动的NCV8401/2/3,及用于高边驱动(内部集成了升压电路)的NCV8450和NCV8460等。这3种方案的优缺点见表2。

利用于BCM的其它方案

除上述板外大功率负载,汽车利用中常见的电动后视镜方面,可以采取安森美半导体的NCV7703来驱动其中的转向机电。这器件提供3个半桥输出,输出电流为0.6 A,达1 A,并具有自诊断功能,提供低静态电流、SPI通讯及低压/过压/过温保护等特性。

另外,车身控制模块需要收集车门、车锁、组合开关等数10个信号,常常需要扩大MCU的输入端口,这就需要并行端口转串行端口的逻辑转换芯片,经常使用的是安森美半导体的8位移位寄存器MC14021B。

安森美半导体还为组合尾灯提供不同的解决方案。如NCV7680是1款8通道低边恒流驱动器,能以脉宽调制(PWM)方式设定尾部行车/刹车电流输出,而NSI45xx则是新推出的恒流线性稳压器(CCR),基于安森美半导体待批专利的自偏置晶体管技术,以低本钱、强固等特点提供较高性能,着眼于替换1些汽车尾灯中使用的电阻型驱动器。

总结:

利用环境刻薄的车身控制模块(BCM)对元器件提出了更高的要求。本文探入探讨BCM设计在电源、车身络及板外大功率负载驱动等多个方面的要求,并比较分析了1些领域中不同方案的优劣势。安森美半导体针身为全球的高性能、高能效硅方案供应商,针对车身控制模块等汽车利用提供具有强固保护特性、高可靠性、低静态电流的解决方案,如电源稳压器、总线收发器、高频收发器、继电器驱动器、预驱动器、电机驱动器、LED驱动器及MOSFET等,帮助设计人员为他们的BCM设计选择更佳的元器件方案,从而在市场上占据优势。

供稿:安森美半导体

(文章来源:盖世汽车)

什么牌子的增高药比较有效
快速自然增高法
补钙长高吃什么好
矮小症与侏儒症的区别
怎么才能很快长高
推荐阅读
图文聚焦